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Abstract
It has been proposed that short-lived quantum entanglement of protons in
condensed matter systems would result in anomalous inelastic scattering cross-
sections at electronvolt energy transfers. This proposal seems to be confirmed
by neutron measurements on the VESUVIO spectrometer at ISIS and by
measurements using other techniques. However, there have been a number
of published suggestions of ways in which the observed effects on VESUVIO
could be introduced by assumptions used in the data analysis. In this paper
it is shown using experimental data and Monte Carlo simulations that these
suggestions cannot explain the observed cross-section anomalies. The other
assumptions of the data analysis are also examined. It is shown that the
assumption of a Gaussian peak shape for the neutron Compton profile can
introduce significant errors into the determination of cross-section ratios, but
also cannot explain the observed anomalies.

1. Introduction

The neutron scattering experiments discussed in this paper were motivated by the proposal of
Chatzidimitriou-Dreismann [1], that if the time interval during which an incident particle may
interact with the target system is comparable to the quantum decoherence time, anomalous
inelastic scattering cross-sections would be observed. It was suggested that quantum
entanglement would give different ratios of cross-sections to those calculated from the
sample composition and standard theory. This proposal obtained initial experimental support
from experiments on liquid H2O–D2O mixtures using Raman light-scattering [2] and eV
neutron scattering [3], performed on the VESUVIO spectrometer at the ISIS pulsed neutron
source. These measurements showed anomalous ratios of the hydrogen and deuterium cross-
sections. Subsequent VESUVIO measurements have been performed by Karlsson et al on
niobium and palladium hydrides and deuterides [4–6] and by Chatzidimitriou-Dreismann
et al on polystyrene [7], benzene [8] and other systems [9, 10]. These measurements all
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exhibited anomalous ratios of the proton and deuterium inelastic cross-sections. Recently
Chatzidimitriou-Dreismann et al [11] compared neutron cross-section results obtained on the
amorphous polymer ‘Formvar’ (C8H14O2) with the results of electron–proton scattering from
the same material. The two techniques showed the same anomalous ratio of H and C inelastic
cross-sections as a function of momentum transfer, despite the very different experimental
methods used in the two cases.

Chatzidimitriou-Dreismann et al [7, 12], Karlsson and Lovesey [13, 14] and Karlsson [15]
have presented different theoretical treatments of this effect. Both treatments share the
assumption that the observations are due to quantum effects, which exist over the timescales
∼10−15 s accessed by measurements using eV neutrons. However, these theoretical
interpretations have been questioned by Cowley [16] and by Colognesi [17]. The accuracy of
the experimental results has also been questioned. It has been argued by Blostein et al [18–21]
that the way in which the instrument resolution function is incorporated into the data fitting
routines introduces serious errors into the data analysis, and that this could account for the
observed anomalies. It has also been stressed by Cowley that an accurate correction of the
measured data for the variation of the incident neutron intensity with energy is necessary and
it has been suggested that any errors in this correction could also account for the observed
anomalies. In the present paper these two points are specifically addressed. It is shown using
measured data and Monte Carlo simulations of data that neither can explain the anomalies
observed. The other assumptions of the data analysis are also critically examined.

The outline of the paper is as follows. In section 2, the expression used to fit the VESUVIO
data is derived. Section 3 describes the way in which the instrument resolution is incorporated
into the data analysis. Section 4 describes the Monte Carlo (MC) procedure used to test
the fitting programs. In sections 5–7 the influence of instrumental effects on the results are
evaluated, using MC simulations and also by comparing data taken under different experimental
conditions. Section 5 considers the effects of the correction for the incident beam intensity.
Section 6 considers the systematic errors generated by approximations made to incorporate
the instrument resolution in the fitting programs. Section 7 discusses effects dependent on
sample size, such as attenuation, multiple scattering and detector dead time effects. Sections 8
and 9 discuss the validity of the assumptions (a) that scattering can be described within the
impulse approximation (IA), and (b) that the atomic momentum distributions have Gaussian
peak shapes. Section 10 contains a summary and conclusions.

2. Theory of the data analysis procedure

2.1. Count-rates in time of flight neutron scattering experiments

We first consider a system of N identical atoms, scattering neutrons into a detector subtending
solid angle d�, at scattering angle θ . It follows from the definition [22] of the partial differential
scattering cross-section d2σ/d� dE , that the number of neutrons with incident energies in the
range E0 to E0 + dE0, detected with final energies between E1 and E1 + dE1, is

CD(E0, E1) dE0 dE1 = I (E0)D(E1)
d2σ(E0, E1, θ)

d� dE1
d� dE0 dE1 (2.1)

where I (E0) dE0 is the number of incident neutrons/unit area with energies between E0 and
E0 + dE0, and D(E1) is the probability that a neutron of energy E1 is detected. It follows from
standard theory [22] that for isotropic scattering,

d2σ(E0, E1, θ)

d� dE1
= |b|2

√
E1

E0
S(q, ω) (2.2)
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θ

Figure 1. A schematic representation of the VESUVIO spectrometer at ISIS.

where b is the nuclear scattering length, the energy transfer in the measurements is

ω = E0 − E1 (2.3)

and the momentum transfer is

q = √
2m

(
E0 + E1 − 2

√
E0 E1 cos θ

)1/2
. (2.4)

The velocity of the scattered neutron is

v1 = √
2E1/m (2.5)

with a similar expression for the velocity v0 of the incident neutron, where m is the neutron
mass. The neutron time of flight t is thus

t = L0

v0
+

L1

v1
(2.6)

where L0 is the incident flight path and L1 is the final flight path (see figure 1). Equations (2.5)
and (2.6) can be used to define E0 in terms of E1 and t .

E0(E1, t) = m

2

(
L0v1

v1t − L1

)2

(2.7)

and the total number of neutrons detected in a time channel between t and t + dt can be
expressed as

C(t) dt =
[∫

CD[E0(t, E1), E1]
dE0(t, E1)

dt
dE1

]
dt . (2.8)

An alternative and equally valid approach, used by Blostein et al [18], is to calculate C(t) by
expressing E1 as a function of t and E0 and integrating over E0. However, it is more convenient
to use equation (2.8) when discussing an ‘inverse geometry’ instrument such as VESUVIO,
where the energy of the scattered neutron is analysed. It follows from (2.5) and (2.7) that

dE0

dt
=

(
− 23/2

L0m1/2

)
E3/2

0 . (2.9)
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For an ideal inverse geometry instrument, in which L0, L1, θ are precisely known and only
neutrons of a precisely defined energy ER are detected, i.e.

D(E1) = D(ER)δ(E1 − ER). (2.10)

It follows from (2.1) and (2.8)–(2.10) that

C(t) = 2

(
2

m

)1/2 E3/2
0

L0
I (E0)D(ER)N

d2σ

d� dE1
d� (2.11)

where E0(ER, t) is defined via (2.7). Equation (2.11) is the standard expression for the count
rate in an inverse geometry time of flight spectrometer [23].

2.2. The impulse approximation

The VESUVIO spectrometer is mainly used to determine atomic momentum distributions in
condensed matter systems, by ‘deep inelastic neutron scattering’ (DINS). DINS relies upon
the fact that at sufficiently high momentum transfer, the impulse approximation (IA) can be
used to interpret data. The validity of the IA in neutron scattering has been discussed by many
authors [24–27] and at the energy and momentum transfers attained on VESUVIO is accurate
to within ∼5% in hydrogenous samples [28]. A basic assumption of the IA is that for neutron
wavelengths much less than the interatomic spacing, atoms scatter incoherently. Thus if atoms
of different mass M are present in the sample, it follows from (2.11) that the count rate is

C(t) = 2

(
2

m

)1/2 E3/2
0

L0
I (E0)D(ER)

∑
M

NM
d2σM

d� dE1
d� (2.12)

where NM is the number of atoms of mass M and d2σM/d� dE1 is the partial differential
cross-section for mass M . The IA effectively treats the scattering as single atom ‘billiard ball’
scattering with conservation of momentum and kinetic energy of the neutron + target atom.
The dynamic structure factor for atoms of mass M is thus [22]

SM (�q, ω) =
∫

nM ( �p)δ

(
ω +

p2

2M
− ( �p + �q)2

2M

)
d �p (2.13)

where nM( �p) is the atomic momentum distribution for mass M . It is important to understand
that the total scattering cross-section given by the IA is the ‘free atom’ value, which is not the
same as the cross-section in the neutron–nucleus centre of mass frame. If

nM ( �p) = δ( �p) (2.14)

it follows from (2.13) and (2.2) that

d2σM

d� dE1
= b2

M

√
E1

E0
δ

(
ω − q2

2M

)
(2.15)

where bM is the ‘bound’ scattering length for atoms of mass M . Integrating equation (2.15)
over the solid angle d� and final energies E1 gives [22] the ‘free atom’ cross-section.∫

d2σM

d� dE1
dE1 d� = 4πb2

M

(1 + M/m)2
= σ 2

M

(1 + M/m)2
(2.16)

where σM is the standard tabulated ‘bound’ total scattering cross-section for mass M .
It follows from (2.13) that

SM (q, ω) = M

q
JM (yM) (2.17)
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where

yM = M

q

(
ω − q2

2M

)
. (2.18)

and

JM (yM) =
∫

nM ( �p)δ(yM − �p · �q/q) d �p. (2.19)

The ‘neutron Compton profile’ JM(yM) is the probability distribution of the momentum
component of mass M along the direction of �q and is analogous to the ‘Compton profile’,
measured in Compton scattering of photons from electrons.

It follows from equations (2.17) and (2.2) that

d2σM

d� dE1
= b2

M

√
E1

E0

M

q
JM(yM). (2.20)

Combining equations (2.12) and (2.20)

C(t) = E0 I (E0)

q

∑
M

AM M JM (yM) (2.21)

where

AM = 2

L0
D(ER)

√
2ER

m
��NM b2

M (2.22)

is proportional to the scattering intensity from mass M .

2.3. Fitting expression

In the derivation of equation (2.21) it is assumed that the ‘instrument parameters’ L0, L1, θ

and E1 are known exactly. In reality these quantities can be determined only according to
some probability distribution P(L0, L1, θ, E1), which determines the instrument resolution.
The measured count rate Cm(t) is an average over the possible values of these parameters,
weighted by their probability of occurrence

Cm(t) =
∫

C(t)P(L0, L1, θ, E1) dL0 dL1 dθ dE1. (2.23)

Thus the exact incorporation of the instrument resolution function would entail the evaluation
of this four dimensional integral for each data point, in addition to the convolution in t , required
to incorporate the uncertainty in the measurement of time of flight. To reduce data processing
times, the approximation is made in the data analysis that the resolution can be incorporated
as a single convolution in t space, with a different resolution function RM(t) for each mass.
Thus (2.21) is modified to

Cm(t) =
[

E0 I (E0)

q

] ∑
M

AM M JM (yM) ⊗ RM (t). (2.24)

The approximation of replacing the exact expression (2.23) by (2.24) is referred to in the rest
of the paper as the ‘convolution approximation’ (CA).

A second approximation of the data analysis is that JM (yM) is assumed to have a
normalized Gaussian form

JM (yM) = 1√
2πw2

M

exp

(−y2
M

2w2
M

)
. (2.25)
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The data analysis consists of fitting equations (2.24) and (2.25) to the data with two fitting
parameters for each atomic mass, AM and wM . AM determines the integrated peak intensity
corresponding to a mass M , and wM determines the peak width. It follows from (2.22) that

AM

AM ′
= NM b2

M

NM ′ b2
M ′

= NM σM

NM ′σM ′
(2.26)

where σM is the ‘bound’ cross-section for mass M and σM ′ that for mass M ′. Thus if the
sample composition (and hence NM /NM ′ ) is known, the ratios of cross-sections for atoms of
different masses can be determined from the ratio of the fitted parameters AM and AM ′ . All
results discussed in this paper were obtained in this way.

There are a number of possible sources of error in the determination of cross-section ratios
from the fitting expression defined by (2.24) and (2.25), which will be examined in this paper.

(1) The incident spectrum intensity I (E0) must be accurately known.

(2) The incorporation of the resolution function components as Gaussian or Lorentzian
functions is an approximation. Furthermore, incorporation of the resolution function
as a convolution in t is an approximation.

(3) Multiple scattering and sample attenuation effects may change the fitted cross-section
ratios.

(4) An implicit assumption in equations (2.21)–(2.23) is that the probability D(E1) that a
neutron of energy E1 is detected is independent of t , which is not true if detector dead
time effects are significant.

(5) The impulse approximation is strictly valid only as q → ∞, and corrections at the finite
q of measurements must therefore be evaluated.

(6) The functions JM (yM) may have non-Gaussian peak shapes.

3. The VESUVIO resolution function

It is assumed in the data analysis that the distributions of instrument parameters L0, L1, θ and
E1 are statistically independent, and that these distributions can be defined in terms of mean
values, L̄0, L̄1, θ̄ , Ē1 and widths of the distributions, �L0, �L1, �θ , �E1. Both mean values
and widths are determined by calibration measurements, as described previously [29]. For
the calculation of E0, q, yM in terms of t , in the fitting expression (2.24), the mean values
L̄0, L̄1, θ̄ and Ē1 are used. The widths are used to determine the mass dependent resolution
widths of the functions RM (t) as follows.

For a given M , the position tM (L0, L1, θ, E1) of the peak centre in time of flight is
determined by equation (2.6) and the relation

v1

v0
= cos θ +

√
(M/m)2 − sin2 θ

M/m + 1
. (3.1)

Equation (3.1) follows from the assumption of the IA that the peak centre corresponds to
scattering from an atom with zero momentum, with conservation of momentum and kinetic
energy. The width in t due to the uncertainty in for example E1 is calculated as

�tM E1 = ∂ tM

∂ E1
�E1 (3.2)
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with similar expressions for the other resolution components in L0, L1 and θ . All resolution
components other than the energy resolution are assumed to have a Gaussian peak shape in t
and their widths are therefore added in quadrature.

�t2
M I =

(
∂ tM

∂L0
�L0

)2

+

(
∂ tM

∂L1
�L1

)2

+

(
∂ tM

∂θ
�θ

)2

. (3.3)

The resolution function for these components is represented as a Gaussian in t , with standard
deviation �tM I .

On VESUVIO the final energy is determined using the filter difference method [30],
where two measurements are taken, one with an absorbing filter placed between the sample
and detector and one with the filter removed. The difference between these two measurements
is determined by the probability that the filter absorbs a neutron. This is

A(E1) = 1 − exp[−Ndσ(E1)] (3.4)

where N is the number of filter atoms cm−3, the filter thickness is d and the filter total cross-
section is σ(E1). The effective detection probability D(E1) is equal to the product of the filter
absorption with the detector efficiency η(E1).

D(E1) = A(E1)η(E1). (3.5)

Filters with resonance absorption peaks, which absorb neutrons only in a narrow range of
energies, are used to determine E1. Two filters have been used in the measurements, either an
Au filter with Nd = 7.35 × 1019 cm−2, which defines a final energy E1 = 4908 meV, with an
approximately Lorentzian shape of half width at half maximum (HWHM) �E1 ∼ 140 meV,
or a U filter with Nd = 1.46 × 1020 cm−2, E1 = 6671 and an approximately Gaussian shape
with standard deviation �E1 ∼ 63 meV. For the Au filter, the total resolution function RM(t)
is therefore represented as a convolution of a Lorentzian of HWHM �tM E1 and a Gaussian of
standard deviation �tM I , whereas with the U filter analyser RM (t) is represented as a Gaussian

function of standard deviation
√

�t2
M E1

+ �t2
M I .

4. Monte Carlo simulations of VESUVIO

Monte Carlo (MC) simulations of VESUVIO data can be performed using the computer code
DINSMS, which has been described previously [31]. The MC program follows individual
neutron histories through the spectrometer and then bins them in t , according to the time they
have taken to travel between moderator and detector. The input to the program is

(1) The mean flight paths L̄0, L̄1 and the scattering angle θ̄ for each detector, defined by the
position of the sample and detector centres.

(2) The incident neutron spectrum intensity I (E0), the moderator size and the probability
distribution of times the neutron leaves the moderator.

(3) Definition of the sample in terms of

(a) the sample size, geometry and composition NM .
(b) d2σM/d� dE1 for each mass. This is defined by equations (2.19) and (2.20), and

input values of σM and JM (yM).

(4) The detector size, geometry and efficiency η(E1), calculated from the known thickness
and doping levels of the 6Li doped glass scintillator detectors used on VESUVIO.

(5) The filter absorption A(E1). This is calculated from the known filter thickness and the
tabulated neutron resonance parameters for the Au and U resonances [32]. All final
energies between 0.1 and 60 eV are included in the definition of the filter resolution, for
both Au and U filters.
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DINSMS exactly incorporates resolution effects, multiple scattering and sample
attenuation and is used in this paper to assess systematic errors introduced into cross-section
ratios, derived by fitting data with equation (2.24).

The procedure followed is

(a) Simulate a lead calibration measurement and use the standard instrument calibration
routines [29] to determine the energy width �E1 for each detector.

(b) Generate simulated data sets for the sample and use the standard instrument fitting routines,
incorporating equations (2.24) and (2.25) and the fitted value of �E1 from step (a), to
determine the cross-section ratios.

(c) Compare the fitted cross-section ratios σM/σM ′ with those input to the MC simulation.

Data are simulated for all detectors used in measurements and the simulated data are analysed
in precisely the same way as real data. Simulations with ‘perfect resolution’ can also be made
by setting the moderator, sample and detector sizes to ∼10−6 cm and all final energies to
exactly 4.908 eV, so that L0, L1, θ and E1 are precisely defined.

5. Correction for incident neutron intensity

5.1. Determination of I (E0)

It has been stressed [16, 18–20] that an accurate determination of the incident neutron intensity
I (E0) is essential for the determination of cross-section ratios on VESUVIO. I (E0) was
measured using the VESUVIO incident beam monitor 1 (see figure 1). The incident energy of
the neutrons is related to their time of flight measured in the monitor via

E0(t) = 1
2 m(L/t)2. (5.1)

The incident beam intensity is related to the measured monitor counts Cm(t) dt via

I (E0) dE0 = Cm(t)

ηm(E0)

dt

dE0
dE0 (5.2)

where ηm(E0) is the monitor efficiency at energy E0. An example of a measurement of I (E0),
determined from (5.2), is shown in figure 2(a), together with a fit to the function

I (E0) = B/Eγ (5.3)

with B and γ as adjustable parameters. The fit gave γ = 0.90 with statistical errors at the
∼10−5 level, in agreement with Monte Carlo calculations of the moderator performance [33],
which predict that γ = 0.9. A large number of such data sets, collected over the past 10 years,
all give consistent values γ = 0.90 ± 0.01.

As a further test on the accuracy of the measurement of I (E0), a second procedure was
used to determine γ . A U filter was cycled in the incident beam (see figure 1) and the difference
between the counts with the foil in and foil out was calculated. An example of such a difference
measurement is shown in figure 2(b). The difference foil out − foil in is given by

�(t) dt = I (E0)
dE0

dt
dt ηm(E0)A(E0) (5.4)

where A(E0) is the filter absorption, defined in equation (3.4). It follows from (5.4) that the
sum of counts in time of flight, over the area of a single resonance peak, centred at ER, is∫ t2

t1

�(t) dt =
∫

I (E0)ηm(E0)A(E0) dE0 ≈ I (ER)ηm(ER)αR (5.5)
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(a)

(b)

Figure 2. (a) The points are the incident neutron spectrum after correction for the monitor efficiency.
The solid curve is a fit to equation (5.3). (b) Difference between monitor spectra obtained with a
U foil in the incident beam and with no foil in the beam. The four peaks correspond to resonances
at 6.7, 22, 37 and 66 eV.

where t1 and t2 are chosen to include only a single resonance peak and

αR =
∫

A(E0) dE0 (5.6)

is the total absorption corresponding to the resonance peak chosen. I (E0) and η(E0) can
be taken outside the integral in (5.5) due to the narrowness of the peaks. The absorption
factor αR was also calculated from (3.4) and (5.6) for U resonances at 6.7, 21, 37 and 66 eV,
using tabulated resonance parameters for U [32], which are known with very high accuracy.
The quantity Nd was determined by weighing the filter, which has uniform thickness over a
10 cm×10 cm area. The detector efficiency ηm(ER) can also be calculated, and for the 0.5 mm
thick glass beads used in standard ISIS monitors is ∝1/

√
ER to ∼1%. Using calculated values

of αR and ηm(ER), I (ER) was calculated from SR for each of the four resonance peaks. These
values of I (ER) were then fitted to the function I (E0) defined in equation (5.3), to obtain γ .
The advantage of this measurement over the direct determination of γ from the full monitor
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Figure 3. The points ++ were obtained from fits to simulations for H2O/D2O mixtures with
γ = 0.8, the points �� were for γ = 0.9 and ∗ ∗ γ = 1.0. The points show the results from
VESUVIO data collected using an Au filter.

Table 1. Measurements of γ obtained by the methods described in section 5. The means with
standard deviations are also given.

Run U foil transmission Direct measurement

10 539 0.93 0.89
10 540 0.90 0.89
10 541 0.94 0.89
10 545 0.90 0.89
10 550 0.96 0.90

Mean 0.93 ± 0.01 0.892 ± 0.02

spectra is that γ is determined only by the neutrons absorbed by the foil. Thus, for example,
any delayed neutron background has little effect on γ values obtained in this way. The results
obtained are shown in column 2 of table 1. For comparison, values of γ obtained by direct
fitting of the spectra as in figure 2(a) are also given. There is a small systematic difference in
γ values obtained by the two different methods, but, as will be shown in the following section,
this difference is much too small to explain the anomalies observed.

5.2. Effects of errors in I (E0)

The measurements described in [3] were of the ratio of the H and D cross-sections, σH/σD, in
mixtures of D2O and H2O as a function of D2O concentration xD. In order to test how sensitive
these measurements are to the accuracy with which γ is known, complete data sets were
simulated by DINSMS, as described in section 4, using perfect resolution. Incident intensities
of the form in (5.3), with γ = 0.8, 0.9 and 1.0, were input to three different simulations. These
three simulations were then fitted using the standard data analysis routines, which assume
γ = 0.9. Values of σH/σD were calculated from the fitted parameters, as an average over
the angular range 50◦–75◦, following exactly the same procedure used for real data. Figure 3
shows values of σH/σD as a function of xD, obtained from for the three different values of
γ input to the simulation. Also shown are the data measured in [3]. With an input value to
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σ
σ

Figure 4. Values of σH/σD obtained from fitting individual time of flight spectra for the H2O/D2O
data published in [3] as a function of scattering angle. The points ◦◦ were for xD = 0.9, ×× for
xD = 0.5 and for xD = 0.3. Within error at a given xD, there is no angular dependence.

DINSMS of γ = 0.9, the fitted parameters were identical within statistical error to the values
input to the simulation. As γ increases above this value, the values of σH/σD obtained from
the fit decrease, but it is clear from figure 3 that γ would have to be ∼1.1 to account for the
large anomalies observed in the data. Similar comments apply to anomalies observed in other
systems. This is well outside the errors in the measurement of γ given in table 1.

5.3. Jacobians

Cowley [16] has also pointed out that there is a large Jacobian factor involved in any conversion
between a VESUVIO time of flight scan in q, ω space and a constant q scan, and suggested that
any errors in the incorporation of this factor could seriously affect the peak areas obtained from
the fitting. However, we note that the only Jacobian, dE0/dt , involved in the fitting expression
is well known [23]. Furthermore, neglecting resolution effects, if the IA is valid, equation (2.21)
is an exact expression for the count rate as a function of t and is true for any point in q, ω space
accessed by the spectrometer. Thus the exact line of the scan in q, ω space is immaterial, since
in principle every scan will give the same values for the fitting parameters, whether it is at
constant �q or constant θ . For example, fitting DINSMS simulations with perfect resolution to
equation (2.21) recovers the cross-section ratios input to the simulation to within a statistical
error ∼1%, at any scattering angle, as can be seen in the γ = 0.9 simulation shown in figure 3.

It should also be noted that any errors in either the assumed Jacobian dE0/dt , or I (E0),
would produce a consistent angular dependence in the cross-section ratios of H to heavier
atoms in all samples, which is not observed. The ratio σH/σD obtained from measurements on
H2O/D2O mixtures is essentially independent of angle. This is illustrated in figure 4, where
this ratio is shown as a function of angle for three different values of D2O concentration xD,
measured in [3]. VESUVIO measurements on NbD [4] and polystyrene [5] also show ratios of
H to heavier atom cross-sections which are independent of angle. In contrast, measurements
on Formvar [11], shown in figure 5, give a marked fall off in the H to heavy atom cross-section
ratio as the scattering angle, and hence q is increased. Measurements on NbH [4] have an even
stronger angular dependence. Thus no single γ value can explain the anomalies observed in
different samples.
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Figure 5. Anomalous reduction of scattering intensity from H of Formvar (C8H14O2), as a function
of momentum transfer q [11]. The results are normalized by dividing the measured cross-section
ratios of H to C + O by the ‘conventional’ ratio 21.6. The full squares represent VESUVIO results
for 0:1 mm Formvar foils and the open circles those for 0:2 mm foils. The large open triangles
show the results of measurements by high-energy electron–proton scattering from Formvar films
of 50–100 Å thickness, as described in [11].

6. The convolution approximation

6.1. Tests using experimental data and DINSMS simulations

The importance of assessing the inaccuracies introduced by the ‘convolution approxima-
tion’ (CA), defined in section 2.3, was discussed by Chatzidimitriou-Dreismann et al [3] in
the first published measurement of cross-section anomalies on VESUVIO in H2O/D2O mix-
tures. In order to eliminate the possibility that the CA could be responsible for the observed
anomalies in this system, two independent checks were made.

(1) A DINSMS simulation of the measurements was made following the procedure outlined
in section 4. Although a simulation can never fully reproduce experimental data, it should
provide a useful test, since the simulation does not incorporate the CA. An example of a
simulation is compared with real data in figure 6 for a 50% mixture of H2O/D2O. The
ratio σH/σD, obtained from fitting simulated data, is shown in figure 7, for both Au and
U filters, as a function of D concentration xD. The solid line is the ‘conventional’ cross-
section ratio, input to the simulation. It can be seen that with an Au analyser, the DINSMS
simulation predicts that the CA introduces a systematic reduction of the observed ratio
σH/σD by between 5 and 7%. However with a U analyser, fitting simulated data with
equation (2.24) recovers the cross-section ratios input to the simulations to within ∼1%,
over the entire range of concentrations xD.

(2) The VESUVIO measurement was repeated with a U filter, where the MC simulation
indicated that the effects of the CA were negligible. The results of the Au and U filter
measurements are also shown in figure 7. It can be seen that the difference between
the data with the two filters is consistent with the MC calculation, with an offset of the
values obtained from the different filters, but that the slope of the experimental curve
is unchanged. Furthermore, the size of the observed anomaly is much larger than the
systematic errors introduced by the CA for both Au and U filters.
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Figure 6. Data (points) and DINSMS simulations for a 0.17 mm thick sample of a 50% mixture
of H2O/D2O. The solid line was calculated using cross-sections determined from the fitting
procedure. The second solid line shows a simulation using the tabulated values for cross-sections
and illustrates the larger D cross-section obtained from the data. The dotted line shows the multiple
scattering contribution. Three detectors with angles between 58◦ and 65◦ were summed to improve
the statistical accuracy of the data.

σ
σ

Figure 7. Ratio σH/σD in H2O/D2O mixtures as a function of D2O concentration. The squares
were obtained from an MC simulation with an Au filter. The triangles were obtained from an MC
simulation with a U filter. The error bars shown are the standard deviation from the mean over the
angular range 50◦–75◦. The solid line is the ratio 10.7 expected from tabulated values of σH and
σD, input to the MC simulation. The crosses were data [3] taken with an Au filter and the circles
data with a U filter.

6.2. Criticisms

It was concluded [3] on the basis of these tests that the CA had no significant effect on the
observed anomalous cross-section ratios in H2O/D2O mixtures. Simulations of measurements
on other systems also indicated that in all cases that the effects of the CA are small and do
not significantly affect the results obtained. In contrast to this conclusion Blostein et al have
produced a series of papers [18–20], arguing that the CA does introduce serious errors into
cross-section ratios and that this could explain the anomalies observed in H2O/D2O mixtures.
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They base this conclusion on their own numerical simulations of the experiments. Their
simulations indicate that the systematic errors introduced by the CA are comparable with the
observed anomalies, with both Au and U filters. The results in figure 7 should be compared
with the calculations of Blostein et al, illustrated in figure 4 of [18]. For an Au analyser,
we calculate a maximum reduction in σH/σD of ∼7% at xD = 0.3, compared with the 25%
reduction calculated by Blostein et al. With a U filter analyser, we calculate a maximum ∼1%
reduction in σH/σD compared with the ∼40% reduction calculated by Blostein et al.

One possible explanation of the discrepancy between our calculations and those of Blostein
et al is that the latter incorporate only the energy resolution, whereas all resolution components
are included in the DINSMS simulations. With a U filter, for example, the main resolution
component is due to the angular rather than the energy resolution3. However, if all resolution
widths other than the energy resolution are set to zero in DINSMS, this has little effect on
the results obtained from the simulations. The systematic errors in the fit parameters are,
somewhat surprisingly, increased by ∼1–2% when other resolution component are neglected,
but this cannot explain the large discrepancy between the results of our calculation and those
of Blostein et al.

The result of Blostein et al that the errors introduced by the CA with a U filter are
comparable with those introduced with an Au filter are particularly puzzling, and are crucial
to their argument that the anomalies are an artefact of the CA. In figure 8(a) we show the filter
absorption A(E1) calculated from tabulated nuclear resonance parameters for Au (solid curve)
and U (dotted curve) filters of the thicknesses used in the experiments. Figure 8(b) shows
measured data from lead, which is used to determine the energy resolution widths for the two
filters [29]. Both calculation and measurements indicate that a factor 2–3 improvement in
resolution is obtained with a U filter, compared with an Au filter. A rough estimate of the
errors introduced by the instrument resolution function can be obtained by assuming that the
intrinsic peak shape in time of flight of width w and the resolution function of width r are both
Gaussians. Adding the widths in quadrature thus implies that the measured width wm is

wm = (
w2 + r2

)1/2 ∼ w

(
1 +

r2

2w2

)
. (6.1)

With an Au filter, the energy resolution width is typically ∼1/4 that of the intrinsic peak width
of H and D peaks, and this introduces a ∼3% increase in the peak width due to resolution
effects. With a U filter the resolution width is ∼1/10 that of the peak width and introduces
a ∼0.5% increase in peak width. With the assumption that errors introduced by the CA also
scale roughly in the same way, one would expect that the effects of the CA would therefore
be less by a factor ∼6 with U than Au. This agrees with the factor ∼7 decrease in errors
indicated by the MC calculation shown in figure 7. In contrast, Blostein et al calculate that the
error introduced by the CA for a U filter is almost twice that for an Au filter, despite the much
reduced width of the U resolution function, a result which appears to contradict basic physical
considerations.

Blostein et al have also argued that the large errors they calculate in fitted cross-section
ratios are introduced by the wings in the filter absorption A(E1), which are not properly
accounted for by the approximation of the resolution function as a Lorentzian, or by the
approximation of incorporating the resolution function as a convolution. However, the wings
in the Au resolution function are much more significant than those in the U resolution function.
Thus one would expect that if long wings in the resolution function were responsible for the
reduced values of σH/σD, this effect should be larger with an Au filter than a U filter, whereas
the Blostein et al calculation indicates that it is smaller.
3 See figure 5(a) of [29].
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(a)

(b)

Atomic Momentum in Å–1

Figure 8. (a) The calculated absorption A(E1) of the analyser filters as a function of E1. The
solid curve is for the Au filter in single difference. The dotted curve is for the U filter in single
difference. The dashed curve is for the Au filter in double difference. (b) Measured data from lead
for an Au filter (dotted curve) and for a U filter (solid curve) in momentum space. The measurement
is resolution dominated and is used to determine the energy resolution function D(E1).

6.3. Double difference measurements

A further experimental check on the possibility that long wings in A(E1) could affect the
cross-section ratios derived from fitting has recently become possible with the installation
of the ‘double difference’ (DD) technique [30] on VESUVIO. This consists of taking three
measurements: with no filter, with a filter of thickness d1 and absorption A1(E1), and with a
filter of thickness d2 and absorption A2(E1). The ‘double difference’ of the three measurements
is

RDD(E1) = A1(E1) − d1

d2
A2(E1). (6.2)

The DD technique relies upon the fact that when σ(E) is small,

A1(E1) = 1 − exp[−Nd1σ(E1)] ∼ Nd1σ(E1) (6.3)
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(a)

(b)

Figure 9. (a) The sum of data and fits from 8 detectors in the angular range 53◦–68◦, for a 50:50
mixture of H2O/D2O, using the single difference technique. (b) The sum of data and fits from the
same 8 detectors in the angular range 53◦–68◦ , for a 50:50 mixture of H2O/D2O, using the double
difference technique.

with a similar expression for A2(E1). Thus when σ(E) is small RDD(E) = 0 and the wings
of the function A1(E1) in single difference (SD) are removed, whatever their functional form.
This is illustrated in figure 8(a), where the calculated energy resolution function RDD(E1) for
an Au analyser is also shown.

Figure 9 shows recent data collected from a 50:50 mixture of H2O/D2O using both the SD
and DD methods. The improved resolution of the DD data is most obvious in the narrowing
of the width of the peak at ∼370 µs, which is a combination of scattering from the O atom and
the niobium container. The mean of σH/σD over 16 detectors in the angular range 50◦–80◦
was 8.20 + −0.09 for the SD data and 7.70 + −0.20 for the DD data. Both results are in good
agreement with the results given in [3] at the same concentration. Figure 10 shows the results
of fitting to the SD and DD data for Formvar (C8H14O2)4. Again there is a slight increase in
the anomalies when the DD method is used. This is the opposite trend to that which would be
expected, if the anomalies were due to the method used to incorporate the resolution function.

4 Unpublished data from [11].
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σ
σ

Figure 10. Data for Formvar, [11]. The solid line is the calculated ratio of H/(C + O) = 21.6.
The crosses are the single difference results and the triangles are the double difference results. The
circles were determined from the DINSMS simulation described in section 9.

To summarize, the calculations of Blostein et al disagree with our MC simulations. Their
results are also counterintuitive, with a factor ∼2 increase in the errors introduced by the CA,
when the resolution width is decreased by a factor 2–3. Whereas their simulations have not
been tested against real data, it has been shown that DINSMS accurately reproduces both single
and multiple scattering in VESUVIO data for atomic masses ranging between 1 and 207 [31].
We also stress that DINSMS incorporates the energy resolution of VESUVIO accurately. To
within 1–2%, simulated lead calibration measurements give the same widths for the energy
resolution function as real calibrations, for both Au and U filters. The fact that the anomalies
observed on VESUVIO are essentially the same for energy resolution functions varying in
width by a factor 2–3, whether or not significant wings are present, also provides very strong
experimental evidence that the effects of the convolution approximation are small and cannot
explain the observed anomalies.

7. Sample size effects

A series of measurements on H2O/D2O mixtures with xD = 0.5, listed in table 2, with a
variety of sample geometries and scattering intensities varying by a factor ∼5, have given the
same ratio σH/σD, within error. Similarly in NbH [4] and Formvar [11] (see figure 5), varying
the sample thickness by a factor two made no difference to the cross-section ratios obtained.
The fact that the results are independent of the sample size is very strong evidence that sample
attenuation effects and multiple scattering play no significant role in the observed anomalies.
Multiple scattering corrections can also be calculated using DINSMS, as described in [31].
This was done for the thickest sample used in the H2O/D2O experiments (0.5 mm) and the
ratio σH/σD, obtained from fitting data, with and without a correction for multiple scattering,
are shown in figure 11. The form of the multiple scattering contribution is shown in figure 6.
It can be seen that calculated multiple scattering effects are essentially negligible.

Another possible cause of the reduction in the intensity of H peaks, observed in data as the
scattering angle is increased in NbH [4] and Formvar [11], is the presence of dead time effects
in the VESUVIO detectors. This would have the effect of making the detector efficiency η(E1)

a function of time of flight t , with lower η(E1) at short t , where the count rate is largest. Since
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σ
σ

Figure 11. The ratio σH/σD with (crosses) and without (circles) a correction for multiple scattering,
for data taken with an Au analyser filter.

Table 2. The ratio σH/σD for 50:50 H2O/D2O mixtures measured with different materials for the
sample can and different scattering geometries and scattering powers. The scattering power was
determined by comparing the sample scattering at 60◦ with that from a 1 mm thick lead sample.

Can Scattering
Date material Geometry Thickness power (%) σH/σD

March 1995 Al Flat 0.5 mm 6.5 8.0 ± 0.5
July 1995 V Flat 0.2 mm 3.3 7.6 ± 0.2
May 1997 Al Flat 0.5 mm 15 7.4 ± 0.2
Aug. 1997 V Flat 0.2 mm 7.5 7.8 ± 0.5
June 1998 Al Annular 0.5 12 7.5 ± 0.5
June 1998 Nb Annular 0.5 12 7.0 ± 0.4
Jul. 2003 Nb Annular 0.5 8.4 8.2 ± 0.1

the H peak moves to lower t as the scattering angle increases, this would introduce a reduction
in intensity of the H peak with increasing scattering angle, similar to that observed in Formvar
and metal hydride systems. A number of independent checks on the electronic counting chain,
detailed in [5], have been made to eliminate this possibility. Most conclusively, the fact that the
effects observed on VESUVIO are essentially independent of count rates varying by a factors
of up to ∼5 demonstrates that dead time effects have no significant influence on the results.

8. Deviations from the IA

The corrections to the IA for the finite q of measurement, known as ‘final state effects’ (FSE),
have been extensively discussed in the literature [24–28]. The method of [24] is incorporated
in standard VESUVIO data analysis routines. He showed that the effects of finite �q and ω can
be accounted for by expressing the neutron Compton profile J (y) as

J (y) = JIA(y) +
M〈∇2V 〉

36h̄2q

d3 JIA(y)

dy3
+

M2〈F2〉
72h̄4q2

d4 JIA(y)

dy4
+ · · · (8.1)

where JIA(y) is the IA result. 〈∇2V 〉 is the mean value of the Laplacian of the potential energy
of the atom and F is the force on the atom. At the q values observed on VESUVIO, it is only
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Figure 12. σH/σD; the circles include a correction for deviations from the IA, while the crosses
do not.

necessary to include the first correction term in (8.1) in the analysis. It is assumed that the FSE
in H and D atoms are identical to those observed in an isotropic harmonic potential, implying
that 〈∇2V 〉 = 12h̄2w4

M/M , where wM is the Gaussian width defined in equation (2.25).
Within this approximation FSE can be incorporated into the fitting expression for JM(yM),
without increasing the number of fitting parameters. It has been shown previously [34] that
this parameterization of FSE is broadly consistent with deviations from the IA observed on
VESUVIO.

The effects of FSE were evaluated by fitting time of flight data from the different mixtures
of D2O and H2O, described in [3], with and without an FSE correction of the form given in
equation (8.1), in the fitting expression. The mean values of σH/σD over the angular range
50◦–75◦, obtained by the two procedures, are shown in figure 12. It can be seen that the
differences are small and that the trend to smaller values of σH/σD with decreasing xD is
essentially the same. This indicates that FSE on VESUVIO have little effect on the measured
ratio σH/σD in this system. Similar comments apply to other systems studied.

9. Peak shapes

The approximation that J (y) for all masses is a Gaussian function has also been questioned [16].
Recently it has become possible to fit the peak shapes of VESUVIO data exactly and hence to
measure J (y), without any assumptions about the peak shape [35]. In figure 13 we show the
J (y) derived for the H atom in Formvar using the procedure given in [35], together with the
best Gaussian fit. It can be seen that there are wings in J (y), which are not well described by
a Gaussian function. An MC simulation of Formvar data was made with the measured J (y)

for H in figure 13, input to the simulation. The C and O peaks were represented as Gaussians.
The latter assumption should be a good one since the widths of these peaks are resolution
dominated. The results of analysing the simulated data, with the standard fitting programs,
assuming Gaussian peak shapes for all atoms are shown in figure 10. It can be seen that the
simulation gives an increase in σH/σC with increasing scattering angle. This can be understood
in terms of the decreasing overlap between the H and heavy atom peaks as the scattering angle
is increased, and is the opposite trend to that observed in the data. Simulations for NbH [4]
gave similar results to those for Formvar with an increase of ∼7% in the ratio σH/σNb as the
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Figure 13. J (y) determined for H in Formvar, using the procedure of [35], as dots. The best
Gaussian fit to J (y) is shown as the solid curve.

σ
σ

Figure 14. The crosses show σH/σD obtained by fitting simulated data with non-Gaussian peak
shapes for H and D with the standard fitting programs, which assume that the peak shapes are
Gaussian. The circles show values of σH/σD obtained by fitting experimental data.

angle was increased between 30◦ and 80◦, compared with the ∼40% decrease observed in real
data. A similar procedure was followed to simulate data for H2O/D2O mixtures as a function
of xD, using measured non-Gaussian J (y) for the H and D peak shapes. The results of fitting
the simulated data are shown in figure 14. It can be seen that, in this case, the non-Gaussian
peak shapes do reduce the fitted ratio σH/σD, in a similar way to that observed in data, although
only by ∼30% of the observed value.

10. Conclusions

We have demonstrated that the following considerations cannot explain the observed cross-
section anomalies.
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(1) Inaccuracies in the incident intensity, as suggested by Cowley [16]. The Jacobian dE0/dt is
a standard textbook expression [23] and is simply calculated. The incident beam spectrum
I (E0) has been calculated [33] and measured in two different ways, with the same result,
within ∼4%, whereas errors in the measured I (E0) would have to be at least ∼20% to
explain the results obtained. The fact that a number of systems give cross-section ratios
that are independent of angle also suggests very strongly that the anomalous cross-sections
cannot be explained in this way.

(2) The way in which the energy resolution function is incorporated into the data analysis as
suggested by Blostein et al [18–20]. Since the results are essentially independent of a
wide range of different resolution functions, with or without long wings, it is clear that
this suggestion cannot account for the anomalies.

(3) Since the results obtained are independent of sample geometry and scattering power,
sample attenuation, multiple scattering and detector dead time effects can all be eliminated
as a possible cause of the observed anomalies.

The agreement obtained between neutron and electron–proton scattering [11] measurements
also provides strong experimental evidence that the three effects above cannot explain the
observed anomalies. The remaining assumptions of the analysis, that the scattering can be
described within the impulse approximation and that neutron Compton profiles are Gaussian,
are shared by the analysis of electron–proton scattering and neutron scattering data and
therefore cannot be eliminated quite so conclusively as a possible cause of the observed
anomalies. However, simulations using the measured peak shapes indicate that the effect
produced by the assumption of Gaussian peak shapes is too small to account for the observations
in H2O/D2O systems. Furthermore, the trend to lower cross-sections for H with increasing q ,
observed in NbH and Formvar, is masked rather than enhanced by the effect of peak shapes.
Thus we conclude that there is strong evidence that the observed anomalies are due to a
breakdown of standard neutron scattering theory at eV energy transfers and are not an artefact
of the VESUVIO instrument or the data analysis procedures employed.
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